Linear Models 1

Isfahan University of Technology Fall Semester, 2014

References:

- [1] G. A. F., <u>Seber</u> and A. J. <u>Lee</u> (2003). Linear Regression Analysis (2nd ed.). Hoboken, NJ: Wiley.
- [2] A. C. <u>Rencher</u> and G. B. <u>Schaalje</u> (2008). Linear Models in Statistics (2nd ed.). John Wiley & Sons, Inc.
 - [3] R. B., Bapat (2000), Linear Algebra and Linear Models, (2nd ed.). Springer-Verlag.
 - [4] S. R., Searle (1971). Linear Models. New York: Wiley.

The PDF versions of references are available in the link http://rikhtehgaran.iut.ac.ir/

Prerequisites:

- •. Linear Algebra
- Basic Statistical Inference.

Grading Policy:

- Assignments & Quizes: 3-5 points.
- Midterm Exam: 5-7 points .
- Final Exam: 10 points.

Contents

Ch. 2. Matrix Algebra. (Rencher and Schaalje)

Pr	reface		xv
1	Vect	ors of Random Variables	1
	1.1	Notation	1
	1.2	Statistical Models	2
	1.3	Linear Regression Models	4
	1.4	Expectation and Covariance Operators	5
		Exercises 1a	8
	1.5	Mean and Variance of Quadratic Forms	9
		Exercises 1b	12
	1.6	Moment Generating Functions and Independence	13
		Exercises 1c	15
	Misc	cellaneous Exercises 1	15
2	Mul	tivariate Normal Distribution	17
	2.1	Density Function	17
		Exercises 2a	19
	2.2	Moment Generating Functions	20
		Exercises 2b	23
	2.3	Statistical Independence	24
			. v

vi CONTENTS

		\mathbf{E}	xercises 2c	26	5
	2.4	Distri	bution of Quadratic Forms	27	7
		\mathbf{E}	xercises 2d	31	•
	Misc	ellaneo	us Exercises 2	31	-
3	Linea	ar Regr	ession: Estimation and Distribution Theory	35	; ;
	3.1	Least	Squares Estimation	35	ý
		\mathbf{E}	xercises 3a	41	-
	3.2	Prope	rties of Least Squares Estimates	42	2
		\mathbf{E}	xercises 3b	44	ŀ
	3.3	Unbia	sed Estimation of σ^2	44	ŀ
		\mathbf{E}	xercises 3c	47	7
	3.4	Distri	bution Theory	47	7
		\mathbf{E}	xercises 3d	49)
	3.5	Maxir	num Likelihood Estimation	49)
	3.6	Ortho	gonal Columns in the Regression Matrix	51	l
		\mathbf{E}	xercises 3e	52	2
	3.7	Introd	lucing Further Explanatory Variables	54	ł
		3.7.1	General Theory	54	ł
		3.7.2	One Extra Variable	57	7
		E	xercises 3f	58	3
	3.8	Estim	ation with Linear Restrictions	59)
		3.8.1	Method of Lagrange Multipliers	60)
		3.8.2	Method of Orthogonal Projections	. 61	L
		E	xercises 3g	62	2
	3.9	Desig	n Matrix of Less Than Full Rank	62	2
		3.9.1	Least Squares Estimation	62	2
		Ε	xercises 3h	64	1
		3.9.2	Estimable Functions	64	1
		E	exercises 3i	65	5
		3.9.3	Introducing Further Explanatory Variables	65	5
		3.9.4	Introducing Linear Restrictions	68	5
		Ε	xercises 3j	66	3
	3.10	Gener	ralized Least Squares	66	3
		E	xercises 3k	69	9
	3.11	Cente	ering and Scaling the Explanatory Variables	69	9
		3.11.1	Centering	7(0
		3.11.2	Scaling	7:	1

		Exercises 31	72
	<u>3.12</u>	Bayesian Estimation	73
		Exercises 3m	76
	3.13	Robust Regression	77
	`	3.13.1 M-Estimates	78
		3.13.2 Estimates Based on Robust Location and Scale	
		Measures	80
		3.13.3 Measuring Robustness	82
		3.13.4 Other Robust Estimates	88
		Exercises 3n	93
	Mise	cellaneous Exercises 3	93
4	Hy	pothesis Testing	97
	4.1	Introduction	97
	4.2	Likelihood Ratio Test	98
	4.3	$F ext{-Test}$	99
		4.3.1 Motivation	99
		4.3.2 Derivation	99
		Exercises 4a	102
		4.3.3 Some Examples	103
		4.3.4 The Straight Line	107
		Exercises 4b	109
	4.4	Multiple Correlation Coefficient	110
		Exercises 4c	113
	<u>4.5</u>	Canonical Form for H	113
		Exercises 4d	114
	4.6	Goodness-of-Fit Test	115
	4.7	F-Test and Projection Matrices	116
	Mise	cellaneous Exercises 4	117
5	Con	fidence Intervals and Regions	119
	5.1	Simultaneous Interval Estimation	119
		5.1.1 Simultaneous Inferences	119
		5.1.2 Comparison of Methods	124
		5.1.3 Confidence Regions	125
		5.1.4 Hypothesis Testing and Confidence Intervals	127
	5.2	Confidence Bands for the Regression Surface	129
		5.2.1 Confidence Intervals	129
		5.2.2 Confidence Bands	129

viii CONTENTS

5.3	Predi	ction Intervals and Bands for the Response	131
	5.3.1	Prediction Intervals	131
	5.3.2	Simultaneous Prediction Bands	133
5.4	Enlar	rging the Regression Matrix	135
Misc	cellaneo	ous Exercises 5	136

6.1The Straight Line16.1.1Confidence Intervals for the Slope and Intercept16.1.2Confidence Interval for the x-Intercept16.1.3Prediction Intervals and Bands16.1.4Prediction Intervals for the Response16.1.5Inverse Prediction (Calibration)1Exercises 6a16.2Straight Line through the Origin16.3Weighted Least Squares for the Straight Line16.3.1Known Weights16.3.2Unknown Weights1Exercises 6b1	39
6.1.1 Confidence Intervals for the Slope and Intercept 1 6.1.2 Confidence Interval for the x-Intercept 1 6.1.3 Prediction Intervals and Bands 1 6.1.4 Prediction Intervals for the Response 1 6.1.5 Inverse Prediction (Calibration) 1 Exercises 6a 1 6.2 Straight Line through the Origin 1 6.3 Weighted Least Squares for the Straight Line 1 6.3.1 Known Weights 1 6.3.2 Unknown Weights 1 Exercises 6b 1	00
6.1.2 Confidence Interval for the x-Intercept 1 6.1.3 Prediction Intervals and Bands 1 6.1.4 Prediction Intervals for the Response 1 6.1.5 Inverse Prediction (Calibration) 1 Exercises 6a 1 6.2 Straight Line through the Origin 1 6.3 Weighted Least Squares for the Straight Line 1 6.3.1 Known Weights 1 6.3.2 Unknown Weights 1 Exercises 6b 1	39
6.1.3Prediction Intervals and Bands16.1.4Prediction Intervals for the Response16.1.5Inverse Prediction (Calibration)1Exercises 6a16.2Straight Line through the Origin16.3Weighted Least Squares for the Straight Line16.3.1Known Weights16.3.2Unknown Weights1Exercises 6b1	.39
6.1.4Prediction Intervals for the Response16.1.5Inverse Prediction (Calibration)1Exercises 6a16.2Straight Line through the Origin16.3Weighted Least Squares for the Straight Line16.3.1Known Weights16.3.2Unknown Weights1Exercises 6b1	.40
6.1.5Inverse Prediction (Calibration)1Exercises 6a16.2Straight Line through the Origin16.3Weighted Least Squares for the Straight Line16.3.1Known Weights16.3.2Unknown Weights1Exercises 6b1	41
Exercises 6a16.2Straight Line through the Origin16.3Weighted Least Squares for the Straight Line16.3.1Known Weights16.3.2Unknown Weights1Exercises 6b1	45
 6.2 Straight Line through the Origin 6.3 Weighted Least Squares for the Straight Line 6.3.1 Known Weights 6.3.2 Unknown Weights Exercises 6b 	45
6.3Weighted Least Squares for the Straight Line16.3.1Known Weights16.3.2Unknown Weights1Exercises 6b1	.48
6.3.1Known Weights16.3.2Unknown Weights1Exercises 6b1	.49
6.3.2 Unknown Weights 1 Exercises 6b 1	.50
Exercises 6b 1	.50
	.51
	53
6.4 Comparing Straight Lines 1	.54
6.4.1 General Model 1	.54
6.4.2 Use of Dummy Explanatory Variables 1	56
Exercises 6c 1	57
6.5 Two-Phase Linear Regression	159
6.6 Local Linear Regression 1	62
Miscellaneous Exercises 6	163
7 Polynomial Regression	165
	165
•	165
_	166
	172
	 172
•	 172
	- · - 173
	176
	180
	180

		7.3.2	Multidimensional Smoothing	184
	Misc	ellaneo	ous Exercises 7	185
8	Ana	lysis of	Variance	187
	8.1	-	luction	187
	8.2	One-V	Way Classification	188
		8.2.1	General Theory	188
		8.2.2	Confidence Intervals	192
		8.2.3	Underlying Assumptions	195
		E	Exercises 8a	196
	8.3	Two-	Way Classification (Unbalanced)	197
		8.3.1	Representation as a Regression Model	197
		8.3.2	Hypothesis Testing	197
		8.3.3	Procedures for Testing the Hypotheses	201
		8.3.4	Confidence Intervals	204
		E	Cxercises 8b	205
	8.4	Two-	Way Classification (Balanced)	206
		E	Exercises 8c	209
	8.5	Two-	Way Classification (One Observation per Mean)	211
		8.5.1	Underlying Assumptions	212
	8.6	Highe	er-Way Classifications with Equal Numbers per Mean	216
		8.6.1	Definition of Interactions	216
		8.6.2	Hypothesis Testing	217
		8.6.3	Missing Observations	220
۰ ·		E	Exercises 8d	221
	8.7	Desig	ms with Simple Block Structure	221
	8.8	Analy	ysis of Covariance	222
		E	Exercises 8e	224
	Mise	cellaneo	bus Exercises 8	225
		;		
9	Dep	artures	from Underlying Assumptions	227
	9.1	Intro	duction	227
	9.2	Bias		228
		9.2.1	Bias Due to Underfitting	228
		9.2.2	Bias Due to Overfitting	230
		E	Exercises 9a	231
	9.3	Incor	rect Variance Matrix	231
		E	Exercises 9b	232

x	CONTENTS	

	9.4	Effect	of Outliers	233
	9.5	Robus	tness of the F -Test to Nonnormality	235
		9.5.1	Effect of the Regressor Variables	235
		9.5.2	Quadratically Balanced F-Tests	236
		Ex	cercises 9c	239
	9.6	Effect	of Random Explanatory Variables	240
		9.6.1	Random Explanatory Variables Measured without	
			Error	240
		9.6.2	Fixed Explanatory Variables Measured with Error	241
		9.6.3	Round-off Errors	245
		9.6.4	Some Working Rules	245
		9.6.5	Random Explanatory Variables Measured with Error	246
		9.6.6	Controlled Variables Model	248
	9.7	Colline	earity	249
		9.7.1	Effect on the Variances of the Estimated Coefficients	249
		9.7.2	Variance Inflation Factors	254
		9.7.3	Variances and Eigenvalues	255
		9.7.4	Perturbation Theory	255
		9.7.5	Collinearity and Prediction	261
		\mathbf{E}_{2}	xercises 9d	261
	Misc	ellaneo	us Exercises 9	262
-				
10			from Assumptions: Diagnosis and Remedies	265
		Introd		265 266
	10.2	0.2 Residuals and Hat Matrix Diagonals		
		\mathbf{E}	xercises 10a	270
	10.3	Dealin	ng with Curvature	271
		10.3.1	Visualizing Regression Surfaces	271
		10.3.2	Transforming to Remove Curvature	275
		10.3.3	Adding and Deleting Variables	277
		E	xercises 10b	279
	10.4	Nonco	onstant Variance and Serial Correlation	281
		10.4.1	Detecting Nonconstant Variance	281
		10.4.2	Estimating Variance Functions	288
		10.4.3	Transforming to Equalize Variances	291
		10.4.4	Serial Correlation and the Durbin–Watson Test	292
		\mathbf{E}	xercises 10c	294
	105	Depar	tures from Normality	295
	10.0	Depar		230
	10.0	_	Normal Plotting	295 295

		10.5.2	Transforming the Response	297
		10.5.3	Transforming Both Sides	299
		E	xercises 10d	300
	10.6	Detect	ting and Dealing with Outliers	301
		10.6.1	Types of Outliers	301
		10.6.2	Identifying High-Leverage Points	3 04
		10.6.3	Leave-One-Out Case Diagnostics	306
		10.6.4	Test for Outliers	310
		10.6.5	Other Methods	311
		E	xercises 10e	314
	10.7	Diagn	osing Collinearity	315
		10.7.1	Drawbacks of Centering	316
		10.7.2	Detection of Points Influencing Collinearity	319
		10.7.3	Remedies for Collinearity	320
		\mathbf{E}_{i}	xercises 10f	326
	Misc	ellaneo	us Exercises 10	327
11	Com	putatic	onal Algorithms for Fitting a Regression	329
	11.1	Introd	luction	329
		11.1.1	Basic Methods	329
	11.2	Direct	Solution of the Normal Equations	33 0
		11.2.1	Calculation of the Matrix $\mathbf{X}'\mathbf{X}$	330
		11.2.2	Solving the Normal Equations	331
		\mathbf{E}	xercises 11a	337
	11.3	QR D	ecomposition	338
		11.3.1	Calculation of Regression Quantities	340
		11.3.2	Algorithms for the QR and WU Decompositions	341
		\mathbf{E}	xercises 11b	352
	11.4	Singul	lar Value Decomposition	353
		11.4.1	Regression Calculations Using the SVD	353
		11.4.2	Computing the SVD	354
	11.5	Weigh	ited Least Squares	355
	11.6	Addin	g and Deleting Cases and Variables	356
		11.6.1	Updating Formulas	356
		11.6.2	Connection with the Sweep Operator	357
		11.6.3	Adding and Deleting Cases and Variables Using QR	36 0
	11.7	Cente	ring the Data	363
	11.8	Comp	aring Methods	365

11.8.1 Resources	365
11.8.2 Efficiency	366
11.8.3 Accuracy	369
11.8.4 Two Examples	372
11.8.5 Summary	373
Exercises 11c	374
11.9 Rank-Deficient Case	376
11.9.1 Modifying the QR Decomposition	376
11.9.2 Solving the Least Squares Problem	378
11.9.3 Calculating Rank in the Presence of Round-off Error	378
11.9.4 Using the Singular Value Decomposition	379
11.10 Computing the Hat Matrix Diagonals	379
11.10.1 Using the Cholesky Factorization	380
11.10.2 Using the Thin QR Decomposition	380
11.11 Calculating Test Statistics	380
11.12 Robust Regression Calculations	382
11.12.1 Algorithms for L_1 Regression	382
11.12.2 Algorithms for M- and GM-Estimation	384
11.12.3 Elemental Regressions	385
11.12.4 Algorithms for High-Breakdown Methods	385
Exercises 11d	3 88
Miscellaneous Exercises 11	389
12 Prediction and Model Selection	391
12.1 Introduction	3 91
12.2 Why Select?	393
Exercises 12a	399
12.3 Choosing the Best Subset	399
12.3.1 Goodness-of-Fit Criteria	400
12.3.2 Criteria Based on Prediction Error	401
12.3.3 Estimating Distributional Discrepancies	407
12.3.4 Approximating Posterior Probabilities	410
Exercises 12b	413
12.4 Stepwise Methods	413
12.4.1 Forward Selection	414
12.4.2 Backward Elimination	416
12.4.3 Stepwise Regression	418
Exercises 12c	42 0

12.5	Shrink	age Methods	420
	12.5.1	Stein Shrinkage	42 0
	12.5.2	Ridge Regression	423
	12.5.3	Garrote and Lasso Estimates	425
	$\mathbf{E}_{\mathbf{z}}$	kercises 12d	427
12.6	Bayesi	an Methods	42 8
	12.6.1	Predictive Densities	42 8
	12.6.2	Bayesian Prediction	431
	12.6.3	Bayesian Model Averaging	433
	\mathbf{E}	kercises 12e	433
12.7	Effect	of Model Selection on Inference	434
	12.7.1	Conditional and Unconditional Distributions	434
	12.7.2	Bias	436
	12.7.3	Conditional Means and Variances	437
	12.7.4	Estimating Coefficients Using Conditional Likelihood	437
	12.7.5	Other Effects of Model Selection	438
	E	xercises 12f	438
12.8	Comp	utational Considerations	439
	12.8.1	Methods for All Possible Subsets	439
	12.8.2	Generating the Best Regressions	442
	12.8.3	All Possible Regressions Using QR Decompositions	446
	\mathbf{E}	xercises 12g	447
12.9	Comp	arison of Methods	447
	12.9.1	Identifying the Correct Subset	447
	12.9.2	Using Prediction Error as a Criterion	448
	\mathbf{E}	xercises 12h	45 6
Mise	cellaneo	us Exercises 12	456

Appendix A Some Matrix Algebra 457A.1 Trace and Eigenvalues 457 A.2 Rank 458 A.3 Positive-Semidefinite Matrices 460 A.4 Positive-Definite Matrices 461 A.5 Permutation Matrices 464 A.6 Idempotent Matrices 464 A.7 Eigenvalue Applications 465 A.8 Vector Differentiation 466 A.9 Patterned Matrices 466

CONTENTS xiv

A.10	Generalized Inverse	469
A.11	Some Useful Results	471
A.12	Singular Value Decomposition	471
A.13	Some Miscellaneous Statistical Results	472
A.14	Fisher Scoring	473
Appendix B Orthogonal Projections		475
B.1	Orthogonal Decomposition of Vectors	475
B.2	Orthogonal Complements	477
B.3	Projections on Subspaces	477
Appendix C Tables		479
C.1	Percentage Points of the Bonferroni t-Statistic	480
C.2	Distribution of the Largest Absolute Value of k Student t Variables	482
C.3	Working–Hotelling Confidence Bands for Finite Intervals	489
Outline Solutions to Selected Exercises		491
Referenc	es	531
Index		549

.

Why statistical models?

It is in human nature to try and understand the physical and natural phenomena that occur around us. When observations on a phenomenon can be quantified, such an attempt at understanding often takes the form of building a **mathematical model**, even if it is only a simplistic attempt to capture the essentials. Either because of our ignorance or in order to keep it simple, many relevant factors may be left out. Also models need to be validated through measurement, and such measurements often come with error. In order to account for the measurement or observational errors as well as the factors that may have been left out, one needs a *statistical* model which incorporates some amount of uncertainty.

Why a linear model?

Some of the reasons why we undertake a detailed study of the linear model are as follows.

(a) Because of its simplicity, the linear model is better understood and easier to interpret than most of the other competing models, and the methods of analysis and inference are better developed Therefore, if there is no particular reason to presuppose another model, the linear model may be used at least as a first step.

(b) The linear model formulation is useful even for certain nonlinear models which can be reduced to the linear form by means of a transformation.

(c) Results obtained for the linear model serve as a stepping stone for the analysis of a much wider class of related models such as mixed effects model, state-space and other time series models.

(d) Suppose that the response is modelled as a nonlinear function of the explanatory variables plus error. In many practical situations only a part of the domain of this function is of interest. For example, in a manufacturing process, one is interested in a narrow region centered around the operating point. If the above function is reasonably smooth in this region, a linear model serves as a good first order approximation to what is globally a nonlinear model.

Many statistical concepts can be viewed in the framework of linear models

suppose that we wish to compare the means of two populations, say, $\mu_i = E[U_i]$ (i = 1, 2).

In a similar fashion we can combine two straight lines,

