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Why statistical models? 

It is in human nature to try and understand the physical and natural phenomena that 
occur around us. When observations on a phenomenon can be quantified, such an 
attempt at understanding often takes the form of building a mathematical model, 
even if it is only a simplistic attempt to capture the essentials. Either because of our 
ignorance or in order to keep it simple, many relevant factors may be left out. Also 
models need to be validated through measurement, and such measurements often 
come with error. In order to account for the measurement or observational errors as 
well as the factors that may have been left out, one needs a statistical model which 
incorporates some amount of uncertainty. 
 
 
 
Why a linear model? 
 
Some of the reasons why we undertake a detailed study of the linear model are as 
follows. 
 
(a) Because of its simplicity, the linear model is better understood and easier to 
interpret than most of the other competing models, and the methods of analysis and 
inference are better developed Therefore, if there is no particular reason to 
presuppose another model, the linear model may be used at least as a first step. 
 
(b) The linear model formulation is useful even for certain nonlinear models which 
can be reduced to the linear form by means of a transformation.  
 
(c) Results obtained for the linear model serve as a stepping stone for the analysis 
of a much wider class of related models such as mixed effects model, state-space 
and other time series models.  
 
(d) Suppose that the response is modelled as a nonlinear function of the 
explanatory variables plus error. In many practical situations only a part of the 
domain of this function is of interest. For example, in a manufacturing process, one 
is interested in a narrow region centered around the operating point. If the above 
function is reasonably smooth in this region, a linear model serves as a good first 
order approximation to what is globally a nonlinear model.  
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 Many statistical concepts can be viewed in the framework of linear
models

suppose that we wish to compare the means of two populations, say, �i = E [Ui] (i = 1; 2). 
Then we can combine the data into the single model

E (Y ) = �1 + (�2 � �1)x
= �0 + �1x;

where x = 0 when Y is a U1 observation and x = 1 when Y is a U2 observation. Here 
�1 = �0 and �2 = �0 + �1, the di¤erence being �1. We can extend this idea to the case of 
comparing m means using m -1 dummy variables.

In a similar fashion we can combine two straight lines,

Uj = �j + jx1 (j = 1; 2);

using a dummy x2 variable which takes the value 0 if the observation is from the �rst line,

2

and 1 otherwise. The combined model is

E (Y ) = �1 + 1x1 + (�2 � �1)x2 + (2 � 1)x1x2
= �0 + �1x1 + �2x2 + �3x3;
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