




Let f (𝜃) denote a smooth function that we wish to integrate 
over a possibly infinite interval [a, b]. This function represents

𝑡𝜃𝑝𝜃𝒚 or 𝑡𝜃𝑝𝒚𝜃𝑝(𝜃)with 𝑡(𝜃)a summary 
measure.

When 𝑡𝜃=1in the latter expression, we are interested in 
determining the denominator of Bayes theorem.



There are numerous techniques to approximate integrals in a 
numerical manner.

1. Trapezoidal rule

2. Gaussian quadrature rule

3. Laplace method for integration or Laplace 
approximation



1. Trapezoidal rule

The simplest integration techniques involve a grid

𝑎≡𝜃0<𝜃1<⋯<𝜃𝑀+1 ≡𝑏

of equidistant grid points with

𝛿=𝜃𝑚−𝜃𝑚−1,𝑚=1,2,…,𝑀+1.

A first and simple technique to compute the integral 

 𝜃𝑚−1
𝜃𝑚 𝑓𝜃𝑑𝜃

is to approximate the function f (𝜃) in the mth subinterval by 
the rectangle with base 𝛿and height f (𝜃𝑚

∗),



𝜃𝑚
∗=  (𝜃𝑚+𝜃𝑚−1)

2,

the midpoint of the mth subinterval.

This yields

 𝜃𝑚−1
𝜃𝑚 𝑓𝜃𝑑𝜃≈𝛿𝑓(𝜃𝑚

∗)

The total integral is then obtained by summing up all 

contributions from the subintervals, and hence,

 𝑎
𝑏
𝑓𝜃𝑑𝜃≈ 𝑚=1

𝑀+1𝑤𝑚𝑓(𝜃𝑚
∗),

With 𝑤𝑚=𝛿.



2. Gaussian quadrature rule

For the Gaussian quadrature rule, the M grid points, called 

quadrature points (on the infinite interval (−∞,∞)), are not 
equidistant anymore, but are the roots of Mth-degree Hermite

polynomials. The weight 𝑤𝑚 is a function of the (M − 1)th-
degree Hermite polynomial evaluated in the mth grid point.

An important property of the Gaussian quadrature rule is that 
the integral is exactly reproduced when the above polynomial is 
of degree 2M-1.



×Hermitepolynomial

The Hermite polynomials are defined either by

(the "probabilists' Hermitepolynomials"), or sometimes by 

(the "physicists' Hermitepolynomials"). These two 
definitions are not exactly equivalent; either is a rescaling of the 
other, to wit 



Example:

The first eleven probabilists Hermite polynomials are: 





and the first eleven physicists Hermite polynomials are:





Orthogonality

𝐻𝑛(𝑥)is an nth-degree polynomial for n = 0, 1, 2, 3, .... These 
polynomials are orthogonal with respect to the weight function

(probabilist)

Or (physicist) 



Introduction. Most numerical integration techniques consist of 
approximating the integrand by a polynomial in a region or 
regions and then integrating the polynomial exactly. Often a 
complicated integrand can be factored into a nonnegative 
"weight" function and another function better approximated by 
a polynomial, thus 

 
𝑎

𝑏

𝑔(𝑡)= 
𝑎

𝑏

𝜔𝑡𝑓𝑡𝑑𝑡≈ 

𝑗=1

𝑁

𝑤𝑗𝑓(𝑡𝑗)

the quadrature rule {𝑤𝑗,𝑡𝑗}corresponding to the weight 
function 𝜔(𝑡)is available in tabulated form, but more likely it 
is not.



Definitions. Let 𝜔(𝑥)≥0be a fixed weight function defined 
on [a, b]. For 𝜔(𝑥), it is possible to define a sequence of 
polynomials 𝑝0(𝑥),𝑝1(𝑥),…which are orthonormal with 
respect to 𝜔(𝑥)and in which 𝑝𝑛(𝑥)is of exact degree n so 
that 

 
𝑎

𝑏

𝜔𝑥𝑝𝑚 𝑥𝑝𝑛𝑥𝑑𝑥= 
1 𝑤ℎ𝑒𝑛𝑚=𝑛
0 𝑤ℎ𝑒𝑛𝑚≠𝑛

The polynomial 𝑝𝑛𝑥=𝑘𝑛 𝑖=1
𝑛 (𝑥−𝑡𝑖),𝑘𝑛>0,

has n real roots 𝑎<𝑡1<𝑡2<⋯<𝑡𝑛<𝑏. The roots of 
the orthogonal polynomials play an important role in Gaussian 
quadrature. 



THEOREM. Let 𝑓𝑥∈𝐶2𝑁[𝑎,𝑏], then

 
𝑎

𝑏

𝜔𝑥𝑓𝑥𝑑𝑥= 

𝑗=1

𝑁

𝑤𝑗𝑓(𝑡𝑗)+
𝑓2𝑁(𝜀)

2𝑁!𝑘𝑁
2

, 𝑎<𝜀<𝑏

Where

𝑤𝑗=−
𝑘𝑁+1
𝑘𝑁

1

𝑝𝑁+1𝑡𝑗𝑝𝑁
′𝑡𝑗

, 𝑝𝑁
′𝑡𝑗 =  

𝑑𝑝𝑁𝑡

𝑑𝑡
𝑡=𝑡𝑗

, 𝑗=1,2,…,𝑁

Thus the Gauss quadrature rule is exact for all polynomials of 
degree ≤2𝑁−1.



Some of these are tabulated below
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GaussÙHermitequadrature

In numerical analysis , Gauss–Hermite quadrature is a form of 
Gaussian quadrature for approximating the value of integrals of 
the following kind:

In this case



where n is the number of sample points used. The xi are the 
roots of the probabilists' version of the Hermite polynomial 
Hn(x) (i = 1,2,...,n), and the associated weights wi are given by



The nonadaptiveand adaptive Gaussian quadrature

For a unimodal, positive-valued function g(z),Liu and 
Pierc(1994)suggested an adaptive Gauss-Hermite procedure to 
calculate the integral 

 
−∞

∞

𝑔𝑧𝑑𝑧

For a non-adaptive Gauss-Hermite procedure this integral is 
rewritten as

 
−∞

∞ 𝑔(𝑧)

∅(𝑧)
∅𝑧𝑑𝑧= 

−∞

∞

ℎ(𝑧)∅𝑧𝑑𝑧



And is approximated as by  𝑞=1
𝑄
ℎ(𝑧𝑞)𝜔𝑞.Thus , the function 

h(z) is evaluated around 0.However, g(z)is concentrated around its 

mode  𝜇, because of its unimodality.

Liu and Pierc(1994)suggested taking 

 𝜇+  𝜏𝑧𝑞 2(𝑞=1,2,…,𝑄)

as quadrature points, with weights      

𝜔𝑞
∗=𝜔𝑞𝑒

𝑧𝑞
2

.



The variance parameter  𝜏2depends on the shape of the function 

and is equal to  
1

 𝑗
,with

 𝑗=−
𝜕2

𝜕𝑧2
log{𝑔(𝑧)}|𝑧= 𝜇

The integral

 −∞
∞
𝑔𝑧𝑑𝑧≈  𝜏2 𝑞=1

𝑄
𝜔𝑞
∗𝑔( 𝜇+  𝜏𝑧𝑞 2).



3. ɡɰɿɻɰɲɴÜʂ ɢɴʃɷɾɳ

1. We’ll use Laplace’s method to determine the leading-order 
behavior of the integral

𝐼𝜆= 
𝑎

𝑏

𝑓(𝑡)𝑒−𝜆𝑔(𝑡)𝑑𝑡𝑎𝑠𝜆→∞

We’ll assume without further comment that I(𝜆) converges for 
𝜆sufficiently large, that f and g are smooth enough near to be 
replaced by local Taylor approximations of appropriate degree.



2. We’ll first consider the case in which g assumes a strict 
minimum over [a, b] at an interior critical point c. Assume 
that

Å𝑔′𝑐=0,

Å𝑔′′𝑐>0,

Å𝑓(𝑐)≠0.

We can rewrite the integral as

𝐼𝜆=𝑒−𝜆𝑔(𝑐) 
𝑎

𝑏

𝑓𝑡𝑒−𝜆𝑔𝑡−𝑔𝑐𝑑𝑡.



The main idea is this: For 𝜆≥1, the main contribution to the 
integral comes from a small neighborhood of c. Thus, for𝜆≥1,




